A differential geometric setting for dynamic equivalence and dynamic linearization
نویسندگان
چکیده
This paper presents an (infinite dimensional) geometric framework for control system, based on infinite jet bundles, where a system is represented by a single vector field and dynamic equivalence (to be precise : equivalence by endogenous dynamic feedback) is conjugation by diffeomorphisms. These diffeomorphisms are very much related to Lie-Bäcklund transformations. It is proved in this framework that dynamic equivalence of single-input systems is the same as static equivalence.
منابع مشابه
Innnitesimal Brunovsky Form for Nonlinear Systems with Applications to Dynamic Linearization Innnitesimal Brunovsky Form for Nonlinear Systems with Applications to Dynamic Linearization
We deene the \innnitesimal Brunovsky form" for nonlinear systems in the innnite-dimensional diierential geometric framework devellopped in \A Differential Geometric Setting for Dynamic Equivalence and Dynamic Linearization" (Rapport INRIA No 2312, needed to understand the present note), and link it with endogenous dynamic linearizability, i.e. conjugation of the system to a linear one by a (inn...
متن کاملDynamic equivalence relation on the fuzzy measure algebras
The main goal of the present paper is to extend classical results from the measure theory and dynamical systems to the fuzzy subset setting. In this paper, the notion of dynamic equivalence relation is introduced and then it is proved that this relation is an equivalence relation. Also, a new metric on the collection of all equivalence classes is introduced and it is proved that this metric is...
متن کاملDynamic Load Carrying Capacity of Mobile-Base Flexible-Link Manipulators: Feedback Linearization Control Approach
This paper focuses on the effects of closed- control on the calculation of the dynamic load carrying capacity (DLCC) for mobile-base flexible-link manipulators. In previously proposed methods in the literature of DLCC calculation in flexible robots, an open-loop control scheme is assumed, whereas in reality, robot control is achieved via closed loop approaches which could render the calculated ...
متن کاملSome remarks on static-feedback linearization for time-varying systems
This work summarizes some results about static state feedback linearization for time-varying systems. Three different necessary and sufficient conditions are stated in this paper. The first condition is the one by [Sluis, W. M. (1993). A necessary condition for dynamic feedback linearization. Systems & Control Letters, 21, 277–283]. The second and the third are the generalizations of known resu...
متن کاملFeedback linearization and driftless systems
The problem of dynamic feedback linearization is recast using the notion of dynamic immersion. We investigate here a “generic” property which holds at every point of a dense open subset, but may fail at some points of interest, such as equilibrium points. Linearizable systems are then systems that can be immersed into linear controllable ones. This setting is used to study the linearization of ...
متن کامل